Blog
Blog
PHODAL

太长不读性:

在 2022 年总结里,因为 COVID-19 带来了一系列太多变化。而在 2023 年,生成式 AI 的突然出现也带来了更多的变化。

2023 年,生成式 AI 的火爆,让越来越多的组织开始引入 AI 辅助编码。与在 2021 年发布的 GitHub Copilot 稍有差异的是,代码补全只是重多场景中的一个。 大量的企业内部在探索结合需求生成完整代码、代码审查等场景,也引入生成式 AI,来提升开发效率。

在这个背景下,我们(Thoughtworks)也开发了一系列的开源工具,以帮助更多的组织构建自己的 AI 辅助编码助手 。

最近,我们在围绕 AutoDev 开源插件,构建完整的端到端开源辅助编程方案。即:

回顾 2023 年,可以明显地看到生成式 AI 带给软件工程带来的新思考,每个组织也在探索结合生成式 AI 的可能性。 Unit Mesh (https://github.com/unit-mesh) GitHub 组织正是基于我与我的同事的研究,所构建的一系列围绕于生成式 AI 应用于软件研发的开源项目。

Unit Eval 是一个针对于构建高质量代码微调的开源工具箱。其三个核心设计原则:

虽然 ChatGPT 已经诞生了一周年,但是大量的人依旧对于生成式 AI 没有足够的认识。在研发领域,Thoughtworks 一直在与不同的大型企业合作,保持开放性的探索。

借助于在 AutoDev 与 IDE 上的 AI 沉浸式体验设计,我们开始构建一个 AI 原生的文本编辑器,以探索沉浸式创作体验。其适用于需求编写架构文档等等文档场景,以加速软件开发中的多种角色的日常工作。

作为 AutoDev 的核心开发,我们不仅在不断丰富 AutoDev 的功能以满足不同公司的定制需求,还在与各种团队进行持续交流。在处理遗留系统时,我们发现程序员们日常工作中需要面对大量使用过时技术、基础设施混乱的系统。

在过去的一年时间里,国内外大中型公司都在探索、引入了 GenAI / AIGC(生成式 AI),并在 2024 年将持续探索更多的可能性。因此自 10 月起,我们(Thoughtworks)与不同公司的团队持续交流了如何规划 2024 的 AIGC,从在软件研发中应用到产品设计,再到一些新的趋势探索。

Feeds

RSS / Atom

最近文章

关于作者

Phodal Huang

Engineer, Consultant, Writer, Designer

ThoughtWorks 技术专家

工程师 / 咨询师 / 作家 / 设计学徒

开源深度爱好者

出版有《前端架构:从入门到微前端》、《自己动手设计物联网》、《全栈应用开发:精益实践》

联系我: h@phodal.com

微信公众号: 最新技术分享

存档

分类

标签

作者