Blog
Blog
PHODAL

本文将介绍 Chocolate Factory 框架背后的一系列想法和思路。在我们探索和设计框架的过程中,受到了:LangChain4j、LangChain、LlamaIndex、Spring AI、Semantic Kernel、PromptFlow 的大量启发。

在过去的一周里,为了更好的构建 AI Agent 框架 Chocolate Factory(以下简称 CF),我们加入了一个新的应用:代码库 AI 助手。

在过去的一段时间,我们尝试从先前的 AIGC 应用经验里,进行一些再提炼和总结。从起先的 ClickPrompt(https://www.clickprompt.org/)、ChatFlow,到我们的 AI + 软件开发组织 Unit Mesh 下构建了一系列应用:

几个月前,在 Thoughtworks 的内部 AIGC 研讨会里,我们一直达成了一系列一致观点,诸如于:如果没有 “开源模型” 降低企业应用 LLM 的成本,那么 LLM 会很快消亡。所以,我们相信开源 LLM + LoRA 微调会成为企业的一种主流方式。现今,我们可以看到 LLaMA 2、Code LLaMA 2 等模型在不断刷新这种可能性。

在那篇《LLM as Co-integrator:重塑团队间交互,持续改进信息对齐》里,我们说道,为了更好的利用 AIGC 提升效能,我们的第二个阶段应该是:让 LLM 做一些协同工作,诸如于:构建多场景知识问答,降低知识检索成本、设计团队 API,打造智能助理。

在过去的半个月里,我们为开源辅助编程工具 AutoDev 添加了更强大的自定义能力,现在你可以:

在五月份的 QCon 大会上,我们分享了《探索软件开发新工序:LLM 赋能研发效能提升》。在那次分享里,我们重点提及了团队并非所有的时间在 SDLC 上,可能只有 30%~50% 时间在开发软件上,甚至于有可能只有晚上才有时间写代码。所以,LLM 对于总结的提升是有限的,加之工具本身的缺乏,有可能导致带来的提升更有限。

四月,在那篇《AutoDev:AI 突破研发效能,探索平台工程新机遇》,我们初步拟定了 AI 对于研发的影响。我们有了几个基本的假设:

从四月份到现在,我们持续为 AutoDev 编写了一系列的功能。尽管开发了三个多月,我们却一直思考、并重构我们管理 prompt 的方式。

几个月前,我们朝着探索:如何结合 AIGC 的研发效能提升的目标?开源了 AutoDev,如 GitHub 所介绍的:

Feeds

RSS / Atom

最近文章

存档

2026 (1 月)
2025 (12 个月)
2024 (12 个月)
2023 (12 个月)
2022 (12 个月)
2021 (12 个月)
2020 (12 个月)
2019 (12 个月)
2018 (12 个月)
2017 (12 个月)
2016 (12 个月)
2015 (12 个月)
2014 (12 个月)
2013 (9 个月)
2012 (3 个月)
2011 (1 月)
2010 (1 月)
1991 (1 月)

分类

标签

作者