Blog
Blog
PHODAL

查看分类 FinTech

在起始的那篇《金融 Python 即服务:业务自助的数据服务模式》,我们介绍了:使用 Python 如何使用作为数据系统的 wrapper 层?在这一篇文章里,我们将继续之前的话题,介绍如何使用 Python 作为计算引擎核心的胶水层,即:如何使用 Python 构建 DAG(有向无环图,Directed Acyclic Graph) 任务?

在分析 SecDB、Athena、Quartz 几个实时金融与风险分析平台的时候,发现了 Perspective —— 一个 FinTech 开源基金会 FinOS 旗下开源的交互式分析和可视化组件库,由摩根大通(J.P. Morgan Chase)公司开源出去的流式数据可视化组件库。所以,从某种意义上来说也是《金融 Python 即服务:业务自助的数据服务模式》 的后续展开,也可以算是低延迟架构的后续探索。

几年前,在通信领域的技术咨询经历,让我初步了解到预分配内存管理对于性能的改善是多么的明显。最近,也从点点滴滴的金融科技的技术里,看到了高频交易所需要的低延时架构技术(国内受限于特有国情),也有点如出一辙的味道。而在未来,“元宇宙” 可能会换个新的名词,但是呢,它依旧也需要一系列的低延迟架构设计。

最近,在研究国外的金融科技公司,他们如何构建他们的平台战略?机缘巧合之间,刚好看到一篇关于Bank Python 相关的文章《An oral history of Bank Python》。在这篇文章里,介绍了 Bank Python 的四种基础构建块:

Feeds

RSS / Atom

最近文章

存档

2026 (2 个月)
2025 (12 个月)
2024 (12 个月)
2023 (12 个月)
2022 (12 个月)
2021 (12 个月)
2020 (12 个月)
2019 (12 个月)
2018 (12 个月)
2017 (12 个月)
2016 (12 个月)
2015 (12 个月)
2014 (12 个月)
2013 (9 个月)
2012 (3 个月)
2011 (1 月)
2010 (1 月)
1991 (1 月)

分类

标签

作者