AutoDev Knowledge Agent 的想法是来源于一次与客户的交流中,说到的 RAG 相关的问题:结构化数据优于非结构化数据,JSON 还可以采用
在现代软件开发中,代码审查(Code Review)早已成为质量保障和团队协作的核心流程。但在实际工程环境里,审查往往陷入
在上一篇文章《以 ROI 为中心的 AI 代码检视体系与分级》里,我们介绍了在不同的系统
在新的 AutoDev MPP (Multiplatform Paradigm) 架构下,我们也基于 MPP Core 构建了 CLI 体系。而与免费送 Token 的 Gemini CLI 等相比,
依托于我们领先(于国内的)下一代开源的 AutoDev 架构,在最新发布的 AutoDev 多平台预览版(0.1.6)中,我们实现了 AutoDev Server 与
半年前,我在《AutoDev Next》那篇文章中介绍了 AutoDev 的下一代架构,其中一个核心方向就是:多端支持。
过去两三年,我曾为多家公司的资深开发人员开展 Agent 开发培训;最近一个月,我也一直在为毕业生设计和培训 AI Agent。直到本周,
过去的一个多月里,一直在为毕业生进行软件工程与 AI 开发能力培训,直到最近才有空为 AutoDev 完善 A2A 能力的支持。顺带一提,毕业生
在过去的几年中,AI Agent 应用的开发方式经历了快速演变。生成式 AI 的高速发展,使得许多我们不久前构建的应用,很快就被视为“遗留系统”。
在AI应用快速发展的今天,框架选择和迁移策略直接影响着项目的成功。本文基于一个真实的企业级项目,深入分析从Microsoft Semantic Kernel迁移到Spring AI的完整实践过程,为同样面临技术选型的团队提供实战参考。