随着大语言模型(LLM)从被动的问答工具演变为具有自主性的智能体(Agents),传统的检索增强生成(RAG)架构正面临前所未有的挑战。当智能体需要执行长周期的复杂任务——如代码重构、法律合规审计或企业流程自动化——仅凭基于语义相似度的向量检索(Vector Retrieval)已无法满足需求。智能体不仅需要“知识”,更需要“记忆”和“结构化认知”。本文将详尽探讨一种新兴的架构范式:代理式 RAG (Agentic RAG),并重点剖析其核心组件——上下文追踪 (Context Trace) 与 上下文图谱 (Context Graphs)。