Blog
Blog
PHODAL

在先前《预上下文生成》的文章中,我们介绍了预生成上下文的概念和实践:

在过去的两周里,在我们开发 AutoDev Workbench 的过程中,大量地使用 AI 来辅助我们从需求分析、代码生成、测试生成等工作。

过去的一个多月里,我们构建了一个新的 AI 编程工具:AutoDev Workbench ( https://www.autodev.work/ ) 。它是一个 AI

在上一篇文章《AI 友好架构:平台工程赋能 AI 自动编程》,我们提及了 DevOps 平台应该大量的预先生成项目、模板、上下文等信息。在这一篇文章中,

生成式人工智能(Generative AI),特别是大型语言模型(LLMs),在自动化和辅助代码生成任务方面展现出巨大潜力。然而,其固有的逐字符(token-by-token)生成机制,在处理大规模、复杂的代码库和文档时,若每次都需从头处理上下文,则面临效率低下的挑战。本报告旨在深入剖析这一问题,并重点探讨预上下文生成作为核心工程化手段,如何显著提升代码生成的效率和质量。我们将详细分析在生成过程中实时处理上下文的局限性,阐述通过预先生成和结构化必要上下文信息,并结合高效检索机制(如检索增强生成 RAG 及其高级形态),从而优化代码生成流程的解决方案。报告还将讨论上下文缓存、模型架构优化、知识蒸馏等补充技术如何与预上下文策略协同作用。此外,本报告将结合 DeepWiki、Context7 及 DeepWiki-Open 等案例,分析实际系统中预上下文生成与利用的架构考量与实现策略,最终为构建以预上下文为基础的高性能 AI 代码生成系统提出综合建议。核心观点认为,未来的发展方向在于从依赖即时上下文处理的生成模型,转向集成了智能化的上下文预生成、管理和高效检索能力的工程化、情境感知系统,从而实现显著的效率提升。

上下文感知一直是 AI 辅助编程的核心要素之一。在模型不再是瓶颈的 2025 年里,如何获得当前任务所需要的必要上下文信息,将是 AI 助手能否成功的关键。

1. AI 时代下开发者生产力的挑战与机遇

AI 友好架构是一种将成熟的软件架构原则与生成式 AI 的能力相结合并进行调整的软件构建方法。其核心目标是创建一个既便于人类协作,又能被

当下大多数 AI 编程助手,无论是 Copilot、Cursor,还是各种类 AutoGPT 项目,本质上都存在一个问题:AI 编码助手只是更强的补全器,

I. 引言

Feeds

RSS / Atom

最近文章

存档

2025 (12 个月)
2024 (12 个月)
2023 (12 个月)
2022 (12 个月)
2021 (12 个月)
2020 (12 个月)
2019 (12 个月)
2018 (12 个月)
2017 (12 个月)
2016 (12 个月)
2015 (12 个月)
2014 (12 个月)
2013 (9 个月)
2012 (3 个月)
2011 (1 月)
2010 (1 月)
1991 (1 月)

分类

标签

作者